Re: Feedback on the Inyo National Forest Plan Components and Wild and Scenic River Evaluation Posted for Preview

Dear Ed:

We are writing you today in response to your recently released preview of plan components and analyses to support the revised forest plan for the Inyo National Forest. We understand that you are not receiving formal comments on the preview documents. However, in the spirit of continued collaboration in the plan revision process, we offer the following comments and questions regarding the four topic areas Sustainable Recreation, Wild & Scenic Rivers (WSR), aquatic conservation, and species of conservation concern.

In the comments below, when we refer to the “May draft” we mean the draft of the revised forest plan issued in May 2016.

If you have questions about these comments, please contact the following for the respective sections:

- Sustainable recreation: Stan Van Velsor (415-834-8892; stan_vanvelsor@tws.org)
- Wild and Scenic Rivers: Steve Evans (sevans@calwild.org)
- Aquatic conservation: Sue Britting (530-295-8210; britting@earthlink.net)
- Species of Conservation Concern: Sue Britting (530-295-8210; britting@earthlink.net)

I. Sustainable Recreation

We appreciate your new recreation management zone (RMZ) approach and generally support it. However, the information provided in your plan direction update does not provide the details necessary for a clear understanding of how the management zones were created and how they will be integrated with other management direction like the Recreation Opportunity Spectrum.
(ROS) classification system. We hope you will be able to provide more clarity on the following questions in the FEIS and final plan. Specifically:

1. **What criteria was used to establish the boundaries for the three RMZs?** Without a clear understanding of the criteria used to establish the RMZs, it is difficult to determine why one RMZ was established over another. For example:
 a. The General Forest RMZ located between the Bishop Creek Destination RMZ and the Big Pine RMZ has a very similar mixture of ROS classifications (Primitive, Semi-Primitive Non-Motorized, Semi-Primitive Motorized) as the Backroad RMZ located between the White and Inyo Mountains. Yet, the two areas have different RMZ designations.
 b. There are four ROS classifications (Primitive, Semi-Primitive Non-Motorized, Semi-Primitive Motorized, Rural Natural) included in the Backroad RMZ located in the Glass Mountains. Yet, there is a Semi-Primitive Non-Motorized area on the southeast corner of the Backroad RMZ that was excluded.

2. **How will you ensure that RMZ direction and project level decisions will adhere to the ROS classifications?** The RMZs overlay the ROS classification system, which has a long-standing set of management criteria. It is not clear from the plan components included in the Sustainable Recreation update how the ROS classification criteria will be adhered to in project level planning. For example:
 a. Forestwide (REC-FW-GLD) 01 states – “Use the Recreation opportunity spectrum to inform projects, activities, and permitted uses. Recreation uses should be managed adaptively to prevent impacts to other resources and recreation settings.” This is the only plan component that directly addresses the use of ROS classification. Consequently, ROS classification criteria (i.e. non-motorized focus of the Semi-Primitive Non-Motorized ROS class) could be readily disregarded in project level management. To address this weakness, we recommend the following:
 i. **Recommendation**—The final plan should include standards that will ensure consistency with and advance the desired characteristics for each ROS classification. Included below are examples taken from the *Preliminary Draft Proposed Land and Resource Management Plan for the Carson National Forest*. Forestwide (REC-FW-STD)
 1. No new motorized routes or areas shall be constructed or designated in Primitive ROS settings.
 2. In Semi-Primitive Non-Motorized ROS settings, no new permanent motorized routes or areas shall be constructed or designated. Any temporary project-level motorized routes or road construction in semi-primitive non-motorized settings must be rehabilitated within 2 years of project completion.

3. **How will you integrate RMZ direction and project level decisions with the Conservation Watershed plan components?** As a specific subset of watersheds (10- or 12-digit hydrologic unit codes), Conservation Watersheds provide for the long-term persistence of at-risk species and high quality water. However, the updated plan direction for Aquatic
and Riparian Resources contains plan components that appear to be in conflict with the Destination RMZ management concept and plan components. For example:

a. The Bishop Creek Destination RMZ is located in the Baker Creek Conservation Watershed. The plan components associated with the Destination RMZ would facilitate intensive recreation development, yet the Standards (MA-CW-STD) for Conservation Watersheds clearly restrict activities that will result in the long-term degradation of aquatic and riparian conditions.

4. How will the Sustainable Recreation plan direction update address the management of Over-Snow Vehicle use?

a. We understand that the Inyo National Forest is preparing winter-specific ROS classifications that will not be released until the FEIS/final plan. We support the development of winter-ROS and believe it is necessary to provide sustainable winter recreation and a framework for subsequent winter travel management planning. As with summer ROS, however, the final plan must ensure – via appropriate standards and guidelines – that RMZ direction and project-level decisions are consistent with winter ROS classifications.

b. It is our understanding that the Inyo National Forest intends to conduct winter travel management planning at some point following the forest plan revision. See DEIS at 465 (suggesting that OSV use will be subject to site-specific analysis during future implementation-level travel planning). We support this approach, provided that the revised forest plan provides an adequate programmatic framework – including suitability determinations, winter-specific ROS classifications, minimum snow depth restrictions, and other programmatic direction – for management of OSV use and subsequent implementation-level travel planning that will designate particular areas and routes based on the minimization criteria and other relevant regulatory requirements. It is unclear to us how the new sustainable recreation direction, including RMZs, will affect subsequent winter travel management planning. The final plan should make clear that any winter ROS and winter motorized suitability determinations, along with RMZ direction, will help guide the designation of areas and routes for OSV use. OSVs will not be permitted in non-motorized ROS classifications and unsuitable areas, or necessarily in all areas of the forest included in motorized ROS classifications/suitable areas.

II. Wild and Scenic Rivers

We greatly appreciate that the Forest Service has revised the Wild and Scenic Rivers (WSR) inventory of eligible streams based on public comments to the draft revised plan. We support the identification of additional eligible segments of streams already identified in the draft plan inventory, the identification of additional outstandingly remarkable values for existing eligible segments, as well as the addition of streams not previously identified as eligible.

Without the more detailed information provided in Appendix C, our ability to provide meaningful comments on the revised inventory is somewhat limited. We hope that more details will be provided in the FEIS Appendix C for newly identified eligible streams and stream
segments, as well as changes (additions and deletions) in outstandingly remarkable values for streams determined eligible in the draft inventory.

The map depicting eligibility findings is a significant improvement over the maps provided in the DEIS. The identification and depiction of segments using stream ID numbers improves public understanding but it is not an adequate substitute for narrative-based segment descriptions. We request that the final Appendix C include narrative that describes in detail the start and end points of eligible segments.

Perhaps the most disappointing aspect of the revised WSR inventory is the failure to recognize the outstanding biological and historic values of Mono Basin streams (Lee Vining Creek, Rush Creek, and Mill Creek) and their direct and crucial relationship to Mono Lake. Despite extensive public comments, the revised WSR inventory did not find the lower segments of Mill and Lee Vining Creeks to be eligible. Although we appreciate the eligibility finding for lower Rush Creek, it does not appear that Rush Creek’s biological importance to Mono Lake, the restored stream’s intrinsic importance to bird life, or its undeniable historical value associated with the precedent-setting Mono Lake legal decision, were recognized. We request that these specific issues be re-evaluated and the final WSR inventory reflect the importance and eligibility of these streams.

Following are our stream-specific comments:

1. Big Pine Creek – The revised eligibility table indicates that this stream was found eligible in the DEIS. It is not listed as such in the DEIS Vol. 2, Appendix C. It appears that this omission was a mistake as Big Pine Creek was identified as an eligible stream in the 1993 inventory. The final Appendix C should be revised to include more detailed information about Big Pine Creek in the Previously Evaluated Rivers section.

2. Birch Creek – This stream in the White Mountains was determined to be free flowing in DEIS, but only the South Fork Birch Creek is found on the list of “Not Eligible” streams on DEIS Vol 2 Appendix C page 397. Public comments to the DEIS noted possible outstanding wildlife value associated with an isolated population of black toad (a California fully protected species) and the creek’s rich riparian habitat. In addition, public comments noted a possible outstanding geologic value associated with the Birch Creek granite batholith. While the revised inventory lists prehistory values on the South Fork Birch Creek that were not determined to be outstandingly remarkable, there is no mention of the possible outstanding wildlife and geologic values for Birch Creek overall. Please clarify.

3. Cottonwood Creek & Tributaries (White Mountains) – We appreciate the new findings of outstandingly remarkable prehistory values for the very upper segment of Cottonwood Creek, South Fork Cottonwood Creek, and Poison Creek. The downstream segments of Cottonwood Creek designated in 2009 were identified as possessing outstanding fish/wildlife value (likely due to the presence of the Piute cutthroat trout) and an “Other” value, which typically is a cultural value too sensitive to identify explicitly. FSH 1909.2_82.61.2 directs the agency to “Consider the entire river system, including the
interrelationship between the main stem and its tributaries…” Given this, it would improve public understanding if the final Appendix C confirmed that all of Cottonwood Creek (including the upper segment, the South Fork, and Poison Creek) possesses an outstanding prehistory value and describe the relationship of the prehistory values found on all segments.

4. Cottonwood Creek (Sierra Nevada) – We appreciate the clarification and inclusion of additional eligible segments and support the identification of additional outstanding geology, history, and prehistory values. Cottonwood Creek segment 1.027.1 was not identified as eligible due to a supposed lack of outstanding values. In the Non-Eligible Segments table (page 12), the narrative notes the presence of four prehistoric sites and the presence of canyon live oak in segment 1.027.1, which are not considered outstanding. However, eligible segment 1.04.5 directly upstream has outstanding scenic, fish, history, and prehistory values. It seems unlikely that the existing outstanding scenic, history, and prehistory values found in eligible segment directly upstream suddenly are non-existent in segment 1.027.1. We note that segment 1.027.2 begins at the DWP intake and the eligible segment previously identified in the 1993 inventory ended at this point. Perhaps the issue with segment 1.027.1 is whether it is free flowing? But downstream segment 1.027.2 was evidently determined to be free flowing and found to possess an outstanding history value. This anomaly should be clarified in the FEIS Appendix C.

5. Division Creek – We appreciate and support the 3.43-mile segment of Division Creek found eligible in the revised inventory due to its outstanding history value. We look forward to reviewing the narrative for this creek in the FEIS Appendix C.

6. Fish Creek – We appreciate and support the additional outstanding wildlife value identified for this creek. We look forward to reviewing the revised narrative in the FEIS Appendix C.

7. Golden Trout Creek & Volcanic Creek – We appreciate and support the additional outstanding history value identified for Golden Trout Creek. We also appreciate and support the finding that its tributary, Volcanic Creek, is eligible due to an outstanding geologic value. The revised narrative in the FEIS Appendix C should discuss the connection, if any, of the outstanding geologic values on both streams.

8. Hot Creek – We appreciate and support the additional 9.97-miles of Hot Creek found eligible in the revised inventory due to its outstanding prehistory, history, geological, and other values. We look forward to reviewing the revised narrative for this creek in the FEIS Appendix C.

9. Lee Vining Creek – We appreciate and support the additional 4.13-miles of Lee Vining Creek found eligible in the revised inventory. We look forward to reviewing the narrative for this creek in the FEIS Appendix C. However, we are very disappointed that lower Lee Vining Creek downstream of the DWP diversion was not determined eligible. We believe that this segment possesses an outstanding historical value associated with the precedent-setting Mono Lake legal decision. In addition, research by the Point Reyes Bird
Observatory found that Lee Vining Creek and other streams flowing into Mono Lake support the highest indices of breeding songbird diversity and species richness of 33 creeks surveyed in the eastern Sierra Nevada. The lower segment of Lee Vining Creek should be listed as eligible in the final WSR inventory.

10. Little Hot Creek – We appreciate and support the new eligibility finding for 3.9 miles of Little Hot Creek, in recognition of its outstanding geological, prehistory, and other values. No mention is made of its potential outstanding fishery value associated with the presence of the owens tui chub. Please clarify.

11. Mammoth Creek – We appreciate and support the new eligibility finding for 10.45 miles for Mammoth Creek in recognition of its outstanding prehistory, history, and recreation values. We look forward to reviewing the narrative for this creek in the FEIS Appendix C.

12. McGee Creek – We appreciate and support the additional outstanding geological value identified for McGee Creek. We look forward to reviewing the revised narrative for this creek in the FEIS Appendix C.

13. Middle Fork Bishop Creek – We appreciate and support the new eligibility finding for 5.42 miles of the Middle Fork Bishop Creek in recognition of its outstanding history value. We look forward to reviewing the narrative for this creek in the FEIS Appendix C.

14. Middle Fork San Joaquin River – We appreciate and support the additional outstanding scenic value identified for Middle Fork San Joaquin River. We look forward to reviewing the revised narrative for this creek in the FEIS Appendix C.

15. Mill Creek – We appreciate and support the new 1.12-mile segment identified as eligible for its outstanding geological value and the additional geological value identified for the segments previously identified as eligible. However, we are disappointed that the lower segment of Mill Creek to its confluence with Mono Lake was not determined eligible. As stated in our comments to the draft, flows in this segment have been or are being restored and this creek is an important contributor to the biological integrity of Mono Lake.

16. North Fork Big Pine Creek – We appreciate and support the additional outstanding scenic and history values identified for the North Fork Big Pine Creek. We look forward to reviewing the revised narrative for this creek in the FEIS Appendix C.

17. North Fork Crooked Creek – We appreciate and support the new eligibility finding for 4.59 miles of the North Fork Crooked Creek in recognition of its outstanding prehistory value. We look forward to reviewing the narrative for this creek in the FEIS Appendix C.

18. North Fork Lone Pine Creek – We appreciate and support the additional outstanding geological value identified for the North Fork Lone Pine Creek. As this is directly connected to eligible segments of Lone Pine Creek, we believe that it should be incorporated into the table and narrative under Lone Pine Creek. We look forward to
reviewing the revised narrative for this creek in the FEIS Appendix C.

19. O’Harrel Canyon Creek – We appreciate and support the new eligibility finding for 5.32 miles of the creek in recognition of its outstanding prehistory value. However, no mention is made of its potential outstanding fishery value (Lahontan cutthroat trout). Please clarify.

20. Poison Creek – We appreciate and support the new eligibility finding for 3.45 miles of Poison Creek in recognition of its outstanding prehistory value. Since this creek is directly connected to the eligible segment of the South Fork Cottonwood Creek, we believe these streams should be addressed together in the table and narrative.

21. Rock Creek – We appreciate and support the eligibility finding for the new 3.13-mile segment of the Rock Creek in recognition of its outstanding geological value. We look forward to reviewing the narrative for this creek in the FEIS Appendix C.

22. Rush Creek – We appreciate and support the eligibility finding for 10.44 additional miles of Rush Creek, particularly the lower segment of Rush Creek that flows into Mono Lake. However, we believe that this lower segment (1.28.2) possesses an outstanding historical value associated with the precedent-setting Mono Lake legal decision, in addition to its newly recognized geological and other values. In addition, the outstanding wildlife value of lower Rush Creek is well known – this segment supports the densest population of yellow warblers in the state and this segment also provides extremely productive habitat for endangered willow flycatcher and supports flycatcher populations that may provide an important source for the reoccupation of other riparian areas in the region. The FEIS Appendix C should recognize outstanding wildlife and historical values for lower Rush Creek. In addition, we are disappointed that nearly five miles of Rush Creek below Grant Lake Dam was not found eligible or possibly not considered at all. This segment flows out of the federal reservation in the vicinity of Pumice Valley and then back into the reservation, through lands owned and managed by LADWP. Forest Service guidelines clearly allow consideration of river segments “beyond the National Forest boundary if a logical ending point is nearby, such as merger with the main stem of a larger river.” (FSM 1909.12.82.61.1) In this case, the logical ending point is the newly determined eligible segment 1.28.2 and Mono Lake. In addition, Forest Service guidelines direct the agency to “Consider the entire river system, including the interrelationship between the main stem and its tributaries and their associated ecosystems...” (FSM 1909.12.82.61.2) The guidelines also clearly anticipates that the Forest Service may determine eligibility for stream segments flowing through non-federal lands, in that it directs the agency to invite the other managing agency (in this case, LADWP) or the state to conduct joint suitability studies of eligible rivers and to maintain interim protection (to the extent is has authority) for eligible segments if the other agency or state declines to participate in a joint suitability study. (FSM 1909.12.83.12) On this basis, we believe that all of Rush Creek (except for the segment inundated under Grant Reservoir) is free flowing, possesses outstandingly remarkable values, and should be determined eligible in the FEIS Appendix C.
23. Parker Creek – There is no indication as to why Parker Creek to the National Forest boundary isn’t eligible. This creek segments shares the same outstanding values as the upstream eligible segments. Further, the issue of determining eligibility of stream segments on private lands discussed in detail for Rush Creek applies to the segment of Parker Creek between the Forest boundary and its confluence with Rush Creek. Because the Mono Lake legal decision fully restored flows in Parker Creek, this outstandingly remarkable history value is even more applicable to the supposedly ineligible/not studied segments of Parker Creek. We believe that the FEIS Appendix C should find all of Parker Creek eligible.

24. Walker Creek – The Rush Creek discussion applies to the segment of Walker Creek downstream of Walker Dam to its confluence with Rush Creek. We believe that the FEIS Appendix C should find all of Walker Creek eligible.

25. South Fork Bishop Creek – We appreciate and support the additional outstanding geological value identified for the South Fork Bishop Creek. We look forward to reviewing the revised narrative for this creek in the FEIS Appendix C.

26. South Fork Cottonwood Creek – We appreciate and support the new eligibility finding for 3.7 miles of South Fork Cottonwood Creek in recognition of its outstanding prehistory value. Since this creek is directly connected to the eligible segment of Poison Creek, we believe these streams should be addressed together in the table and narrative.

27. South Fork Mill Creek – We appreciate and support the additional outstanding geological value identified for the South Fork Mill Creek. Since this creek is directly connected to the eligible segments of Mill Creek, we believe these streams should be addressed together in the table and narrative. We look forward to reviewing the revised narrative for this creek in the FEIS Appendix C.

III. Aquatic Conservation Strategy

We appreciate the consolidation of the elements of the aquatic conservation strategy into one section. We think this makes for a more coherent presentation and enhances our ability to track how the various elements fit together.

We also find the application of “conservation watersheds” to be useful and a positive step towards addressing the conservation of aquatic species. We have concerns about the actual location or extent of some of the identified conservation watersheds. We are also concerned about the loss of management direction for species that were covered by critical aquatic refuges (CARs) that are now omitted from the Conservation Watershed approach. We offer thoughts on that below.

We also note some changes to desired conditions, objectives, standards and guidelines that improve their clarity and in some cases strengthen them. Below we offer suggestions for revision to some plan components that would further improve their clarity and benefit to conserving aquatic resources.
A. Watersheds

The following is feedback on specific plan components.

Desired conditions: The addition of desired conditions 5 and 6 is positive and captures the function of the watershed with respect to sediment regime and calls out limits to infrastructure.

Objectives: We suggest adding a second objective that refers to accomplishment of the action plans associated with the Priority Watersheds, e.g., “Actions plans for Priority Watersheds named in the forest plan are completed within 10 years of plan approval. Action plan activities should include physical decommissioning of all system roads identified as unneeded and of unaddressed temporary roads no longer being used, and prioritizing storm-proofing and other road maintenance needs.” Here’s another example of an objective from the Flathead National Forest (draft plan) that captures accomplishment in priority Watersheds:

01 Complete all essential work identified within 5 to 10 priority watersheds as identified under the Watershed Condition Framework (see appendix E).

(USDA Forest Service 2016, p. 19)

Goals: The watershed goal was changed from the May draft by removing language that addressed climate change and taking a landscape or watershed-level approach to restoration. We suggest reverting to the May draft goal.

Standards: Standard 2 is a positive addition. It appears to be limited to “restoration projects” though. We suggest that it be included to cover all projects or decisions that affect aquatic and riparian resources, including but not limited to those with road-related elements. We also suggest that this standard, or a separate, related standard, require that all temporary roads be closed and rehabilitated within two years following completion of the use of the road.

Guidelines: The addition of guideline 1 is positive. These will help protect restoration investments and ensure that “passive restoration” is not overlooked. We suggest the addition of another guideline that “project-level decisions with road-related elements will implement recommendations made in the Travel Analysis Report.”

Potential management approach: We suggest that this “approach” should be listed as a standard.

B. Conservation Watersheds

It is our understanding that the Conservation Watersheds are intended to protect at-risk species thereby replacing the management intent embodied by the Critical Aquatic Refuges contained in the current forest plan. We are concerned that Conservation Watersheds cannot accomplish this since important areas now protected by CARs are not included in the Conservation Watersheds. We note these areas below.
1. Retaining CARs in the Conservation Network

The existing CARs and riparian conservation areas are guided by several conservation objectives in the existing forest plans. An important one for addressing at-risk species is:

Riparian Conservation Objective #4: Ensure that management activities, including fuels reduction actions, within RCAs and CARs **enhance or maintain** physical and biological characteristics associated with aquatic- and riparian-dependent species.

(USDA Forest Service 2004, p. 33) This riparian conservation objective (RCO) establishes a non-degradation standard for management activities to protect dependent species from adverse impacts in CARs and RCAs. Standard MA-CW-STD-02 for Conservation Watersheds comes close to this standard, but it would not be applied to those areas now in CARs but that are outside of Conservation Watersheds. Some of these areas left out are especially concerning to us since these omitted CARs include important habitat areas for federally listed species, e.g., Yosemite toad and Sierra yellow-legged frog and around streams identified for the recovery of Lahontan and Paiute cutthroat trout. These omitted CARs should be included as management areas or land allocations in the forest plan. They could be retained as CARs or called something else, but most importantly the management objective for these areas should be to maintain or enhance habitat for aquatic and riparian dependent species.

2. Expanding Conservation Watersheds to Include Key Areas

Generally, the locations for Conservation Watersheds appear to occur in areas that we think are important to protect. However, since the specific selection criteria and methodology are not presented, we are unable to assess if other locations might also be important to include. We ask that you share the methodology for selecting areas and the ranking criteria as soon as possible along with the description of values reflected in the Conservation Watersheds selected.

We suggest that two Conservation Watersheds should be expanded based on information we provide in our comments on the draft plans. Based on the evaluation on habitat condition, climate change risk, and species richness provided by Trout Unlimited (see panel D in Figure 1 below), the western boundaries of the Cottonwood Creek and Deep Springs conservation watersheds should be expanded to the west following watershed boundaries and ending with the national forest boundary.
3. Additional Plan Components

The following is feedback on other plan components.

Objectives: We suggest that the 20 year time frame is outside the expected life of the plan (10-15 years). It would be better to identify an objective to be achieved within 10 or 15 years.
Also, this objective is difficult to understand and would be difficult to assess. The objective refers to 5 percent of the indicators improving within 20 years. It is not clear that all the indicators in the Watershed Condition Framework are critical to at-risk species and their habitats. It would be better to tailor this to improving indicators most relevant to at-risk species.

We also note that improving 5% of the indicators seems to be a very low bar. There are only 12 “core national watershed condition indicators” (USDA Forest Service 2011, p. 6). This would mean that improvement would be required in one indicator to satisfy the objective. The objective should be tied to improvement in the actual number of indicators that are most critical to the improved function of the Conservation Watershed.

It is also difficult to understand how the value 5 percent would be applied to a Conservation Watershed since each appears to be an aggregate of several watersheds that were evaluated under the Watershed Condition Framework. If five watersheds make up a Conservation Watershed, how would one determine what 5 percent of the indicators would be based on, five percent of 12 indicators or 5 percent of 60 indicators (a suite of 12 indicators for each of the 5 watersheds)?

We think it is important that an objective drive improvement in Conservation Watersheds, but believe that this one should be revised to improve clarity and focus on outcomes that are key to improving conditions for at-risk species. The draft plan for the Flathead National Forest included objectives that we thought were good examples of specific and useful objectives:

Objectives (FW-OBJ-CWN)

01 Conservation Watershed Networks are the highest priority for restoration actions for native fish. Stormproof 15 to 30% of the roads in Conservation Watershed Network prioritized for restoration as funding allows to benefit aquatic species, e.g. bull trout. See appendix C for specific strategies for discussion of treatment options and for prioritization such as roads paralleling streams versus ridge top roads.

02 Over the life of the plan, storm proofing (e.g. up-size culverts, reduce sediment on roads, realign stream constraining road segments, etc.) the transportation system will be accomplished as opportunities are identified on the following prioritized subwatersheds: Sullivan Creek, Wounded Buck Creek, Trail Creek in the North Fork, Whale Creek (includes Upper Whale, Lower Whale and Shorty creeks), Granite Creek, Bear Creek, Goat Creek and Lion Creek. Refer to appendix C for potential management approaches and possible actions.

(USDA Forest Service 2016, p. 21)

In addition to storm-proofing objectives, we believe objectives aimed at physically decommissioning system roads identified as unneeded and unaddressed temporary roads are important. Decommissioning 5% of unneeded/unaddressed roads within Conservation Watersheds per year, or all unneeded/unaddressed roads within Conservation Watersheds within 10 years of plan approval would be a reasonable, specific, and measurable objective.
Standards: We appreciate the focus on sediment in Standard 1. We asked that it be revised to include the phrase in bold and underline: “…impacts to stream connectivity by roads, trails and other uses.” In our experience, many uses including motorized and non-motorized trails, can generate sediment and disrupt hydrologic connectivity.

C. Riparian Conservation Areas

Desired conditions: We suggest that desired condition 1 be revised to focus on the desired species:

1. The connections of floodplains, channels, and water tables distribute flood flows to benefit desired native and non-native species and sustain diverse habitats.

Desired condition 4 from the May draft addressed spatial and temporal connectivity. This desired condition was removed from the preview draft. This aspect of connectivity is not addressed in the preview draft, and we suggest that it be included.

Objectives: We made this comment in the past. There should not be an unqualified objective to “maintain” conditions in RCAs. The objective for these action related objectives should be to enhance or restore. Please strike the word “maintain” from these objectives.

Standards: The preview version (and May draft) removed a standard that is in the existing forest plan that specifically addresses the requirement that management activities are consistent with direction to “enhance or maintain” habitat for aquatic and riparian species:

Allow hazard tree removal within RCAs or CARs. Allow mechanical ground disturbing fuels treatments, salvage harvest, or commercial fuelwood cutting within RCAs or CARs when the activity is consistent with RCOs. Utilize low ground pressure equipment, helicopters, over the snow logging, or other non-ground disturbing actions to operate off of existing roads when needed to achieve RCOs. Ensure that existing roads, landings, and skid trails meet Best Management Practices. Minimize the construction of new skid trails or roads for access into RCAs for fuel treatments, salvage harvest, commercial fuelwood cutting, or hazard tree removal.

The RCO that is particularly relevant to the standard is:

Riparian Conservation Objective #4: Ensure that management activities, including fuels reduction actions, within RCAs and CARs enhance or maintain physical and biological characteristics associated with aquatic- and riparian-dependent species.” (USDA Forest Service 2004, p. 33)

This RCO requires management activities in RCAs and CARs to “enhance or maintain” conditions.
Some of the activities related to roads, skid trails, etc. have been included in the standards or guidelines in the preview draft. However, the direction that fuels treatment or other vegetation management “enhance or maintain” conditions in RCAs is either absent or unclear. Several of the standards and guidelines now fall short of the direction that all management activities in RCAs must “enhance or maintain” conditions. The standards and guidelines should be revised to provide at least the same level of protection granted by the existing plans.

We see that the standard limiting the use of pesticides within occupied sites of Yosemite toad and Sierra yellow-legged frog has been removed. Is this located in a different section of the plan now? We also note that there are no standards or guidelines related to grazing management in Yosemite toad habitat. Our understanding is that the plan components for these listed amphibians would be the same as current direction, but these plan components are now missing. How will Yosemite toad be protected from management threats including grazing?

Standard 7 makes an exception in “Destination Recreation Management Areas” and some other areas. It appears that “Destination Recreation Management Areas” occur within Conservation Watersheds, e.g., Harvey Monroe Hall and Baker Creek conservation watersheds. How does this exception apply in these areas? We ask that these exceptions not be allowed in Conservation Watersheds.

Standard 11 allows grazing management to degrade the conditions of riparian area, meadows, fens and other special aquatic features to “functional at risk and trending toward proper functioning condition.” This is not allowed in the exiting forest plan. Allowing this degree of degradation is not consistent with the stated desired conditions. The provision to degrade the conditions of special aquatic features to “functional at risk” should be removed from this standard.

Standard 8 from the May draft (originally Standard 104 in the current plan) was removed. This standard should be added back and golden trout should also be named in this standard. It is possible that this protection for these trout species is covered by the geographic extent of guideline 8 regarding wild trout waters. See additional comment below on Guideline 12 from the preview draft.

Guidelines: There are several guidelines that we find to be unclear and not consistent with desired conditions or the conservation of aquatic and riparian resources.

Guideline 1 is not clear as it is written because it does not address actions necessary to restore conditions and only refers to mitigation measures. Mitigation measures would be designed to address impacts from other actions that might be proposed. The existing standard is:

102. Prior to activities that could adversely affect streams, determine if relevant stream characteristics are within the range of natural variability. If characteristics are outside the range of natural variability, implement mitigation measures and short-term restoration actions needed to prevent further declines or cause an upward trend in conditions. Evaluate required long-term restoration actions and implement them according to their status among other restoration needs.
The full text of this standard should be included in the final plan since it clarifies restoration actions versus mitigation measures and emphasizes implementing “actions needed to prevent further declines or cause an upward trend in conditions.”

Guideline 6 should include additional language that all skid trails and temporary roads will be closed and rehabilitated within two years following completion of the project. Alternatively, this language should be included in a separate standard.

Guideline 7 does not make sense. The guideline as written appears to suggest that a project can be inconsistent with standards and guidelines. It cannot. This guideline should be rewritten to state that management activities and uses should be designed to maintain proper functioning conditions and to restore at risk and degraded conditions in riparian areas.

It is unclear if Guideline 12 covers at least the area required by existing Standard 104 (USDA Forest Service 2004, p. 63). Standard 104 was designed to be more restrictive about bank disturbance on reaches occupied by certain species of trout. If the areas occupied by Lahonton and Paiute cutthroat trout and the Little Kern golden trout are not designated as “wild trout waters”, then Standard 104 should be added to the final plan.

The May draft included Guideline 10 that addressed habitat for golden trout streams. This guideline should be added to the preview draft.

D. Inclusion of Schematic from May Draft

The May draft included a figure describing the relationship between various management areas related to riparian and aquatic environments (see draft plan, p. 16, Figure 2). We found this useful and suggest that it be revised as needed and included in the final plan.

IV. Species of Conservation Concern (SCC)

A. The SCC List

We appreciate the addition of several species to the SCC list. Based on our review and consultation with colleagues, we agree that the lists for plants, mammals and fish are complete.

We ask that you review the exclusion of peregrine falcon from the species of conservation concern list based on the following information. Although the species account and rationale indicate that nesting birds have not been observed in the forest plan area, we are aware of information to the contrary. A pair began nesting on a Mono Lake Negit islet in 2016. Kristie Nelson with Point Blue told Richard Perloff, the north zone wildlife biologist, that they were successful with young this year. Peregrine falcon historically nested on Mono Lake islands but this is the first confirmed nest since water diversion began. There is also a pair nesting this year in Adobe Creek canyon. We are trying to gather more info about the status of that now. A pair
appears to be nesting in the Owens River gorge near Lake Crowley as well.¹ The nest might be on land owned by Los Angeles Department of Water and Power; however, the pair is using adjacent habitat on the Inyo National Forest to support their nesting.

The SCC list for birds on the Inyo National Forest should be revised to include northern goshawk. As recently as 2013, northern goshawk was included on the Regional Forester’s Sensitive Species list. This species is also identified in the State Wildlife Action Plan by the State of California as a Species of Greatest Conservation Need. We provided a detailed review of analysis for northern goshawk provided in the DEIS and draft biological evaluation. That information provides support for including this species as an SCC. We have attached that section of our comments to this letter (Attachment A) and summarize key points regarding the rationale presented in the preview documents and species account below.

The species account appears to minimize logging as a threat to habitat conditions for northern goshawk. Under the heading “relevant threats,” logging is not identified as a threat even though the narrative and the best available science information identify logging practices (past and current) as a threat. Even the draft biological evaluation for the revised Inyo forest plan found logging practices to be a threat:

> These recent management policies have likely degraded goshawk habitat quality by fragmenting forests, reducing the amount and distribution of mature and old-growth forest stands and large trees, increasing understory tree density, and changing tree species composition, resulting in broad-scale reduction of the proportion of pine in forest stands. Nest sites and territories have been lost from logging in nest stands and from stand replacement fires. (wildlife BE, p. 217)

The narrative in the species account itself also identifies logging practices as a threat:

> The common threats identified include past timber harvest that resulted in a loss of large diameter trees and or foraging opportunities, principally in the lower elevations. (species account, p. 191)

> …both timber harvest and a lack of large trees are associated with lower occupancy by nesting goshawks (Ibid., p. 191)

Despite these references, the species account concludes the threat analysis by omitting any reference to logging and inappropriately highlighting a narrow set of threats to this species: “Potential threats to goshawk include habitat loss from wildfire and climate change” (Ibid., p. 192). This biased view of threats appears to drive the conclusions about excluding this species from the SCC list.

The species account also concludes without basis that “populations have remained stable over the past 50 years.” (Ibid., p. 192). In the narrative, the species account notes that results from two bird surveys suggest that populations are stable; however, it appropriately states that “the

¹ Please contact Jora Fogg (jora@friendsoftheinyo.org) for additional information.
Breeding Bird Survey and Christmas Bird Count are largely recognized as inadequate for monitoring population trends of goshawks (Keane 2008).” (Ibid., p. 189) Thus, there is no data to suggest that populations are stable. There is, however, information to indicate concern about distribution and abundance in the southern Sierra Nevada. Keane (2008) highlighted several areas in California, including the southern Sierra Nevada, where range restriction was a concern for northern goshawk.

The discussion of logging as a risk factor assumes that recent logging practices will continue. This seems to form the basis to conclude that habitat conditions will not be so altered as to cause lack of occupancy or nesting. This section finds that “present timber removal practices (post-1990) on the Inyo NF have shifted emphasis toward a restoration based approach aimed at reducing stand density to improve overall forest health.” (Ibid., p. 194) Timber practices changed since 1992 because the forest plans were amended to require them to do so. This direction includes specific measures to protect nest stands, nesting birds, and nesting and foraging habitat (USDA Forest Service 2004, pp. 38, 45, 49-54). Any effects of logging today on northern goshawks on the Inyo National Forest are shaped by the conservation measures and protections afforded by the forest plans since 1992 when the California spotted owl interim guidelines that included protections for large trees were adopted and the forest plans again amended in 2001 to include survey requirements, limited operating periods around nesting birds, and protected activity centers around nest stands.

Even after finding in the narrative that logging, fire suppression, uncharacteristic fire, and climate change are threats to northern goshawks, the species account concludes without basis that “there are currently no specific threats known to cause habitat loss.” The current forest plan includes measures to lessen these threats to this species. The revised forest plan should build on these conservation measures to promote management that conserves important habitat elements, restores fire, and limits extensive high severity fire. Such practices can also improve habitat resiliency and reduce the threat of climate change to northern goshawk.

B. Species Accounts

We very much appreciate the creation of the species accounts and their posting for review. We believe the accounts should provide the basis for evaluating whether or not fine filter components should be included in the forest plan to provide for the necessary ecological conditions to provide for species persistence. The new format for the species accounts appears to be comprehensive and to provide the appropriate organization to elicit such information. We plan to review these accounts in the coming weeks and will provide additional comments on the accounts at a later time.
Thank you for your consideration of our comments.

Sincerely,

Susan Britting, Ph.D.
Executive Director
Sierra Forest Legacy

Stan VanVelsor, Ph.D.
Regional Conservation Representative
The Wilderness Society

Malcolm Clark
Range of Light Group (Toiyabe Chapter)
Sierra Club

Joe Fontaine
Kern-Kaweah Chapter
Sierra Club

Don Rivenes
Conservation Director
Sierra Foothills Audubon Society

Lisa Cutting
Eastern Sierra Policy Director
Mono Lake Committee

Steve Evans
Wild & Scenic River Consultant
Friends of the River

Pamela Flick
California Representative
Defenders of Wildlife

Greg Suba
Conservation Director
California Native Plant Society

Frances A. Hunt
Eastern Sierra Organizer
Sierra Club
Cc: Mary Beth Hennessy, Team Lead, Regional Office, mhennessy@fs.fed.us
Leeann Murphy, Inyo NF, lbmurphy@fs.fed.us
References

USDA Forest Service 2004. Record of decision. Sierra Nevada Forest Plan Amendment. Pacific Southwest Region.

USDA Forest Service 2011. Watershed Condition Classification Technical Guide. FS-978

2. Northern Goshawk

Northern goshawk has been designated a Regional Forester’s Sensitive Species (RFSS) since the program was initiated in the late 1980s and forest plans in the Sierra Nevada have include land allocations and standards and guidelines for this species since the first forest plans were adopted.

The Forest Service did not identify the need to change protections for northern goshawk in the Notice of Intent to prepare an EIS of the revised forest plans:

Existing management areas and direction for California spotted owl and northern goshawk protected activity centers and spotted owl home range core areas would be retained with clarifications and alignment of plan components. No substantive changes would be made with the following exceptions:

- Updating and clarifying the desired conditions and other plan components for these areas based on information from the California spotted owl new interim guidelines and conservation assessment, when they are available.
- Changing some standards and guidelines within the Community Wildfire Protection Zone and the General Wildfire Protection Zone to better balance the need to provide key habitat with managing the threat of wildfire impacts to communities and other values at risk. This would include minor changes to SNFPA 73 and converting and clarifying direction related to limited operating periods in SNFPA 75, 76 and 77 to guidelines.
- Adding plan content and updating and clarifying standards and guidelines to include opportunities for adaptive management related to the amount of protected activity centers that can be treated mechanically (SNFPA 80 and 81) and with prescribed burning (SNFPA 78 and 79).

(79 FR 168 (August 29, 2014), p. 51554)

None of the exceptions noted in the NOI referred to eliminating protection measures for northern goshawk. Despite the Agency’s intent in 2014 to include this as an at-risk species and retained protection measures, this species has not been included on the Species of Conservation Concern despite the substantial science information indicating concern about its persistence in the plan areas. Furthermore, the draft plans eliminate protection measures currently in place for this species.

a. Overview of Goshawk Status and Habitat Associations in the Sierra Nevada

Goshawks occur primarily in ponderosa pine/mixed conifer vegetation types on the west side of the Sierra Nevada. On the east side, they inhabit Jeffery Pine or ponderosa pine, and occasionally hardwoods such as aspen (Keane 2008). The most consistent vegetative characteristic of goshawk nest sites is dense canopy closure (Zeiner et al. 1990; Squires and Reynolds 1997; Desimone and DeStefano 2005). Nest stands are typically characterized by high canopy cover on gentle to moderate slopes with an open understory (USFS 2001).
plots, stands preferred by goshawks for nesting and roosting (in west side vegetation types), are characterized by (Squires and Reynolds 1997; Hargis et al. 1994; Keane et al. 1999; Maurer 2000; USDA Forest Service 2001a):

- Greater basal area than random plots
- Greater numbers of large live trees (trees > 24” dbh)
- Greater canopy cover (mean = 65% and 70% Keane et al. 2006; Mauer 2000)
- Higher than average numbers of very large, old, trees (mean = 17 trees/ac > 40” dbh)
- Open understory with significantly lower numbers of trees less than 12” in dbh

Possible explanations for goshawk affinity to closed canopy conditions include protection from predators, reduced exposure to cold or hot temperatures, increased food availability, reduced competition for nest location by other large birds (ravens, red-tailed hawks) (Andersen et al. 2005). Goshawks have high territory fidelity (Weins et al. 2006). Nest locations may alternate each year within one territory. A breeding pair may maintain up to eight alternate nests (Squires and Reynolds 1997).

Goshawk reproductive success is closely associated with tree squirrel populations (Keane et al. 2006; Wiens et al. 2006; Salafsky et al. 2007) and annual weather patterns, particularly late winter temperatures (Keane et al. 2006). Considering that tree squirrel densities follow the previous year’s pinecone crop, the importance of old forests is underscored because older conifers tend to produce more abundant and frequent cone crops (Keane et al. 2006).

b. Threats

Goshawks are threatened by logging, fire suppression and other land management activities, as described below. The rationale provided not to identify goshawk as an SCC states that threats are from past activity or outside the planning area. However both of these statements are not supported by best available science as described below.

Keane (2008) summarizes threats to northern goshawk emphasizing habitat loss and degradation as the primary known threats (Squires and Kennedy 2006). Citing timber harvest and fire suppression policies as major stressors, Keane (2008) finds that:

“…recent management policies have likely degraded goshawk habitat quality by fragmenting forests, reducing the amount and distribution of mature and old-growth forest stands and large trees, increasing understory tree density, and changing tree species composition, resulting in broad-scale reduction of the proportion of pine in forest stands. Nest sites and territories have been lost from logging in nest stands and from stand-replacement fires. There is also increased risk of loss of habitat to such fires because past management policies have increased fuel loads.”

Timber harvest is described as the principal threat to breeding populations in Squires and Reynolds (1997). In addition to the relatively long-term impacts of removing nest trees and degrading habitat by reducing stand density and canopy cover, logging activities conducted near nests during the incubation and nestling periods can have an immediate impact resulting in nest
Attachment A: Excerpt of comments on the DEIS for revised Inyo and other forest plans

failure due to abandonment (Boal and Mannan 1994, Squires and Reynolds 1997). Similarly, NatureServe (2015) found timber harvest to be a threat and concluded that:

...probably declining in some areas primarily as a result of habitat alteration (especially logging), which can be expected to continue; effectiveness of forest management guidelines in providing adequate protection remains to be determined.

The vulnerability and threats support a finding of substantial concern for persistence in the plan area.

Past reviews completed by the Forest Service also highlight the substantial risk factors for northern goshawk from actions under the control of the Forest Service:

The major threat to northern goshawks at the present time concerns the effects of vegetation management (e.g., timber harvest, fuels treatments, etc.) and wildfire on the amount, distribution, and quality of habitat.” (Keane and Morrison 1994, Kennedy 1997, Squires and Reynolds 1997).

Assessing historic to current changes in the amount and quality of northern goshawk habitat in the Sierra Nevada is problematic due to uncertainty regarding: (1) historic vegetation conditions; (2) what constitutes high quality goshawk habitat; and (3) current vegetation conditions due to accuracy, resolution, and scale concerns related to current inventory maps. However, it is possible to qualitatively address these issue based on current general knowledge of northern goshawk habitat relationships and overall changes that have occurred in Sierra Nevada forests in response to predominantly selective timber harvesting and fire suppression policies. Analyses conducted at both the plot and landscape scales have documented large reductions in mature and older forests throughout the Sierra Nevada and reductions in the numbers and distribution of large trees as a result of selective harvesting of large pines, and increases in the numbers of smaller diameter trees and density of forest understories as a result of fire suppression (Laudenslayer 1990, McKelvey and Johnstone 1992, Franklin and Fites-Kaufmann 1996). These trends suggest that there has been a reduction in the amount and distribution of the mature and older forests with large trees and open understories used for nesting by northern goshawks. Greater uncertainty exists regarding changes in foraging habitat, although limited knowledge of northern goshawk foraging habitat use would suggest that these habitat trends would also have led to a reduction in the distribution and amount of foraging habitat. Thus, although uncertainty exists, documented changes in the structure and composition of Sierra Nevada forests are predicted to have led to a reduction in the types of habitats used for nesting and foraging based on current understanding of northern goshawk habitat relationships. It is not possible to determine if changes in the distribution and amount of habitat have resulted in northern goshawk population changes due to lack of data on historic and current population sizes and distributions. (USDA Forest Service 2001a).

These threats drove the inclusion of land allocations, desired conditions and standards to ensure that viable populations of northern goshawk were maintained in the plan areas.
Conservation measures on private lands are limited to the protection of a small area around the nest stand. Woodbridge and Detrich (1994) reported that short-term reoccupancy rates approached 100% for core areas that had approximately 80 ha of suitable nesting habitat. These results indicate that the management approach on private lands is likely to contribute to greater variability in nesting success and occupancy.

The threat of habitat modification to northern goshawk and a variety of species associated with old forests was a principle reason driving the forest plan amendments in 2001 and 2004 on eleven national forests in the Sierra Nevada. Protection of nesting habitat through the establishment of a protected activity center (200 acres around a nest stand) was adopted in response to the work by Woodbridge and Detrich (1994) on reoccupancy. This measure and other measures to limit logging were adopted with the objective of reducing the threats to this species and providing for its persistence.

Siegel et al. (2014) evaluated 168 bird species that breed in the Sierra Nevada using NatureServe’s Climate Change Vulnerability Index (CCVI) to predict vulnerability to climate change. Species range maps, information about species’ natural history traits and ecological relationships, historic and current climate data, and spatially explicit climate change projections were weighed. Northern goshawk was among the 17 species ranked as vulnerable, meaning goshawk abundance or range within the Sierra Nevada is likely to decrease by 2050 as a result of climate change (Siegel et al. 2014, p. 7). Factors found to be contributing to goshawk vulnerability to climate change include restricted diet, association with aquatic habitat, and distribution relative to natural and anthropogenic barriers such as wind farms (Siegel et al. 2014, Appendix 2). Furthermore, goshawk populations are still recovering from lingering population impacts of the pesticide DDT (Siegel et al. 2014, Appendix 2). Of note, seven of the seventeen species ranked as vulnerable were associated with mixed conifer forests; this signals concern about estimated changes in this habitat type. The authors recommend using these results to develop strategies to ensure persistence of vulnerable species and guide land management.

Goshawks are vulnerable to land management due to their sparse distribution across the Sierra Nevada. Home ranges for northern goshawks are fairly large and relatively low population numbers would be expected even in areas where threats are non-existent (Keane 2008). Territorial behavior, available prey, and suitability of nesting habitat are all factors that together are likely to regulate population numbers and distribution with habitat quality driving distribution (Keane 2008). This means that landscape can only support a limited number of territories and the spatial distribution of habitat is critical to maintaining northern goshawk populations. Modest reductions in territory occupancy can result in substantial changes to this species distribution, especially on the Inyo, Sierra and Sequoia national forests, which are located at the southernmost extent of this species range in the Sierra Nevada.

Keane (2008) also highlighted several areas in California where range restriction was a concern for northern goshawk. The westside ponderosa pine zone and southern Sierra Nevada were among these areas. Extensive logging of pine forest on the westside of the Sierra Nevada was cited as a principle factor contributing to range restriction. “Goshawks are known to nest down to about 2500 ft (750 m) on the west slope, so it is likely that reductions in mature and old-growth
pine have resulted in reductions in goshawk numbers in these forests” (Keane 2008, p. 158). The southern Sierra Nevada was highlighted for its low nest records on the public lands south of Yosemite National Park. They concluded “It is uncertain whether this represents the limited survey effort expended in these areas, low breeding densities/suboptimal habitat conditions near the southern edge of goshawk distribution in the southern Sierra Nevada, or potential reductions in densities or distribution at the edge of the species’ range.” *(Id.)*

As reported by the Forest Service in 2006, densities of known breeding territories were considerably lower in the southern Sierra Nevada compared to elsewhere in the bioregion (USDA Forest Service 2006; see map below).

![Northern Goshawk Breeding Territories, 1978 - 2003](image)

Figure 5. Northern goshawk breeding territories for the period 1978 to 2003. Map taken from USDA Forest Service 2006.

Goshawks are also extremely sensitive to noise and human presence in or near the nest stand during pair bonding, nest-building and incubation (Squires and Reynolds 1997; Keane et al. 2006). Nest failure has been repeatedly documented from research visits to nest areas before June (Keane et al. 2006). Even camping near nests can cause failure (Squires and Reynolds 1997). Noise and disruption associated with timber harvest operations (e.g., logging equipment, log truck traffic, road construction, timber cruising) can also cause nest failure even after nestlings have almost fledged in late June (*Ibid*). Unusually heavy road traffic or OHV use have the potential for similar negative impacts (USDA Forest Service 2001a).
Attachment A: Excerpt of comments on the DEIS for revised Inyo and other forest plans

c. Rationale for Not Recommending Goshawk as a Species of Conservation Concern is Not Supported by Recent Evaluations of the Species

The Planning Handbook provides factors to be considered in identifying species of conservation concern (SCC). The leading factor is whether a species has already been designated as at-risk through some reputable scientific process. In doing so, the Forest Service recognized that this creates an initial impression of concern about the species’ persistence in the plan area. If the Forest Service decides that there is not a substantial concern for persistence in the plan area for such species, the agency must document evidence to counter the prior classifications. This could include new scientific information, or reasonable alternative interpretations of the existing information. No such reasons were given in the evaluation of goshawk for an SCC.

There are no reasons allowable in the FSH 1909.12 (Ch 10.12.52d), regarding goshawk abundance, distribution, lack of threats, positive trends in habitat, or positive responses to management, that would lead the agency to not identify goshawk as a species of conservation concern. Nor is there lack of sufficient information about the species’ status that leaves the evaluation process uninformed regarding the status of goshawk in the Sierra Nevada.

The rationale for not recommending goshawk as an SCC states that goshawk habitat is within “NRV” and is readily available on these three national forests, and the species is secure throughout its range. But, this rationale is perplexing for several reasons. First, the rationale later states that there is not enough information to determine what goshawk habitat needs are. The conclusion that goshawk is not an SCC because they have plenty of habitat despite it being unclear what goshawk habitat is, doesn’t make sense. Second, the rationale that the species is secure throughout its range is in disagreement with the California Department of Fish and Wildlife’s recent assessment of the species, and requires more explanation for the public and decision maker. Finally, suggesting that the dense ponderosa pine, mixed conifer, red fir, and upper montane forest habitat goshawks rely on for nesting is within NRV is the equivalent of saying such areas meet desired conditions and are not in need of management action. Such a rationale contradicts the very foundation of the DEIS, a document that states (p. 369):

Throughout the three national forests the habitat in the montane zone is becoming increasingly dense and homogenized under the current management approach (see “Terrestrial Vegetation Ecology” section). There is little vertical structural complexity and diversity, and low levels of habitat heterogeneity. These conditions are generally the result of decades of fire suppression, relatively slow treatment rates, limited treatment tools, emphasis on treatments at the patch and stand scale (instead of landscape scale) in the wildland-urban intermix, and requirements to retain all large-diameter trees and dense canopy cover everywhere except in the wildland-urban intermix. Forested habitat within this zone is moving further away from conditions that support at-risk terrestrial wildlife species. There is generally a lack of habitat heterogeneity and structural complexity that supports terrestrial wildlife, particularly prey species. Increasingly uniform canopy condition from the rapidly growing understory of shade-tolerant trees reduces the
Attachment A: Excerpt of comments on the DEIS for revised Inyo and other forest plans

amount of sunlight needed to maintain the understory shrub layer that supports forage and cover for a variety of prey species.

This rationale also contradicts the goshawk threats analysis in the Biological Evaluation (p. 217), which states:

Habitat loss and degradation are the primary known threats to northern goshawks (Squires and Kennedy 2006). As a result of timber harvest and fire suppression policies over the past century, contemporary California forests are strikingly different in structure, composition, and function compared to the range of forest conditions resulting from the historic, natural disturbance regime. These recent management policies have likely degraded goshawk habitat quality by fragmenting forests, reducing the amount and distribution of mature and old-growth forest stands and large trees, increasing understory tree density, and changing tree species composition, resulting in broad-scale reduction of the proportion of pine in forest stands. Nest sites and territories have been lost from logging in nest stands and from stand replacement fires. There is also increased risk of loss of habitat to such fires because past management policies have increased fuel loads.

Last year, the state of California increased the level of concern for goshawk and designated it as a “species of greatest conservation need” for the Sierra Nevada bioregion in the state wildlife action plan (SWAP, CDFW 2015). Key pressures identified in the SWAP for habitats occupied by northern goshawk were fire and fire suppression, logging and wood harvesting. There is even further information that points to significant concern for goshawk in the California. The Northern goshawk is also ranked by NatureServe as S3 in California, where it is considered to be vulnerable. And further, an extensive review of California bird species in 2008 by Shuford and Gardali determined that northern goshawk was a species of special concern in California due to a reduction in range declining population, low population numbers, contribution in California to the taxon’s range, and threats. Even within the Forest Service’s own recent evaluations of the conservation status of goshawks there are conflicting recommendations.

The Region 5 document called “Appendix A: Sensitive Species Evaluation Form” reviewed on February 28, 2012, states: “Management considerations for breeding in [sic] this species should include protection of upper montane forests, protection of specific forest patches used for breeding, and fire management that more closely approximates pre-suppression conditions.” (p. 4). In 2012, reviewers told the Forest Service that habitat protection was needed to ensure goshawk reproduction, and thus viability, in the plan area. There has been no new information presented by the agency, or scientists, to contradict this conclusion. Information provided by these evaluations, as well as by state agencies, do not support the Forest Service’s rationale to not recommend goshawk as an SCC for these national forests.

The rationale given to not include goshawk as an SCC on the Sierra NF (SNF 2016) mentions limiting factors for goshawk, including “nest sites, habitat, and prey availability.” (SNF 2016, p. 17). This evaluation states that “past timber harvest that resulted in a loss of large diameter trees and or foraging opportunities princip” then the sentence just stops without explanation (p. 17). It
Attachment A: Excerpt of comments on the DEIS for revised Inyo and other forest plans

appears as though the rationale provided is incomplete, and is in the process of being edited. This only adds to our concerns about how the agency weighed information in making this decision.

If the Forest Service has previously listed a species as “sensitive”, there should be a substantial burden on the Forest Service to explain why the best available science no longer supports a concern for viability. It must specifically address the prior agency findings regarding viability for goshawk. No such reason not to identify goshawk as an SCC was given.

Northern goshawk has been designated a Regional Forester’s Sensitive Species in Region 5 since the mid-1980s. Its status in the Sierra Nevada was recently reviewed and the region confirmed in 2013 that it still belonged on the revised RFSS list (USDA Forest Service 2016a). Concern about low population numbers and habitat degradation from logging led Region 5 to include conservation measures in the Regional Guide (1980) prepared to support the creation of the first forest plans in the 1980s. These early conservation measures were later modified by forest plan amendments in 2001 and 2004 to improve conservation of nesting birds with the objective to maintain viable populations of this species in the plan area. These forest plan amendments identified the conservation of old forest and associated species as one of five key issues in need of improved management in the Sierra Nevada. Northern goshawk was identified as an at-risk species associated with old forests. The amendments affected eleven national forests.

Under current management direction (USDA Forest Service 2004), 200-acre goshawk nest stands are protected from significant structural alteration from logging projects. Any rationale for why the species should not be considered an SCC must consider how current management has benefited the species, why the current management direction is no longer necessary, and the likely effects changing such management direction would have on the species. In addition, the proposed change to goshawk management is not simply a forest plan and SCC issue, the proposed change would have a significant effect on the human environment and therefore should be addressed and analyzed through the NEPA process. The extent of the analysis in the BE (p. 218) on the effects of the effects of each of the proposed action alternatives on goshawk is limited to:

“Late seral stage habitat is within each alternative and the combination of large trees as well as snags is provided for in each alternative. Climate change concerns are being considered and allowing for late seral habitat corridors and landscape linkages. Risks due to uncharacteristic wildfires is ameliorated by the restoration that is proposed.”

Clearly, this analysis does not address how the changes in forest management direction under Alternative A to any of the proposed action alternatives would affect goshawk.

It is important to recognize situations where threats outside of the plan area may cause concern for persistence of a species in the plan area. For this reason, it is not sufficient for the Forest Service to simply use lack of threats in the plan area as a justification for not selecting a species as an SCC. The rationale must also address the threats to the species as a whole, and explain why they do not create concern that would apply to populations in the plan area. If the national forest is actually a stronghold for a species doing more poorly elsewhere, this could even be a reason for more protective plan components.

SFL et al. comments on the preview plan components and WSR evaluation for the Inyo National Forest (8/10/17) 10
Attachment A: Excerpt of comments on the DEIS for revised Inyo and other forest plans

It is also important to remember that species do not need to be threatened by management actions in order to be identified as an SCC:

“Regardless of the influence of NFS management on species, a species may be identified as an SCC if “the best available scientific information indicates substantial concern about the species' capability to persist over the long-term in the plan area” (36 CFR 219.9). Neither the definition of SCC at (36 CFR 219.9) nor the Directives (FSH 1909.12 ch 10 12.52 through 12.53) indicate that a species must be threatened by agency management to be identified as an SCC.” (Hayward et al. 2016, p.22).

d. The Forest Service Decision to Not Identify Goshawk as a Species of Conservation Concern Does Not Use Best Available Science

The Forest Service does not explain how best available scientific information was applied in the decision to not identify goshawk as a Species of Conservation Concern, as required under the planning rule, 36 CFR 219.3.

As mentioned above, recent designation of goshawk as a California “species of greatest conservation need” for the Sierra Nevada bioregion in the state wildlife action plan (‘SWAP’, CDFW 2015) is contrary to the Forest Service’s finding that goshawk is “secure in its range, except Nevada.” If the species is vulnerable at the global or state level, then they are not considered secure. This statement must be supported by best available science that addresses the species vulnerability, not just presumptions about current habitat availability on National Forests prior to plan implementation (see goshawk section above). Furthermore, the evaluation by Shuford and Gardali (2008) is considered to be the “definitive treatment of the status of declining and vulnerable bird populations in California.” The authors used the structured ranking system developed for the process to determine that northern goshawk was a species of special concern in California due to a reduction in range declining population, low population numbers, contribution in California to the taxon’s range, and threats.

As reported by the Forest Service in 2006, and Keane (2008), densities of known breeding territories where considerably lower in the southern Sierra Nevada compared to elsewhere in the bioregion (USDA Forest Service 2006, see USFS goshawk range map in the NFMA section above). These citations were listed in a table format, but how Forest Service applied this information to the decision to remove goshawk from the SCC list is not adequately explained.

Nor was recent information illustrating goshawk vulnerability to climate change used to inform the plan decision not to include goshawk as an SCC. The threat of habitat modification to northern goshawk and a variety of species associated with old forests was a principle reason driving the forest plan amendments in 2001 and 2004 on eleven national forests in the Sierra Nevada. Protection of nesting habitat through the establishment of a protected activity center (200 acres around a nest stand) was adopted in response to the work by Woodbridge and Detrich

2 See forward by Fish and Game, p. v. in Shuford and Gardali (2008).

SFL et al. comments on the preview plan components and WSR evaluation for the Inyo National Forest (8/10/17)
Attachment A: Excerpt of comments on the DEIS for revised Inyo and other forest plans

(1994) on re-occupancy. This measure and other measures to limit logging were adopted with the objective of reducing the threats to this species and providing for its persistence. The Forest Service does not explain how scientific information was reevaluated and reapplied in novel ways to support the decision to exclude goshawk as an SCC. In fact, the decision is arbitrary and lacks rationale.

Additional information in support of designation as an SCC is provided in the species account for northern goshawk included in Britting et al. (2012). This information was included in scoping comments submitted to the Revision Team in September 2014.

e. Recommendation

We ask that northern goshawk be included as an SCC and that standards and guidelines be included in the revised plan to reduce known threats from logging and other disturbance. Standards and guidelines should be adopted in the revised plans to include protected activity centers, survey requirements, limited operating periods and habitat retention requirements. The additional recommendations that we submitted during scoping in National Forests in the Sierra Nevada: A Conservation Strategy (Britting et al.; 2013) should also be included in the revised plans.